skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Berciu, Mona"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stability of the spin polaron quasiparticle, well established in studies of a single hole in the 2D antiferromagnets, is investigated in the 1D antiferromagnets using at t -J J model. We perform an exact slave fermion transformation to the holon-magnon basis, and diagonalize numerically the resulting model in the presence of a single hole. We demonstrate that the spin polaron collapses - and the spin-charge separation takes over - due to the specific role played by the magnon-magnon interactions and the magnon hard-core constraint in the 1Dt t -J J model. Moreover, we prove that the spin polaron is stable for any strength of the magnon-magnon interaction other than the unique value found in a 1D antiferromagnet with the continuous symmetry of the spin interactions. Fine-tuning to this unique value is extremely unlikely to occur in quasi-1D antiferromagnets, therefore the spin polaron is the stable quasiparticle of realistic 1D materials. Our results lead to a new interpretation of the ARPES spectra of quasi-1D antiferromagnets in the spin polaron language. 
    more » « less
  2. null (Ed.)
    Resonant inelastic X-ray scattering (RIXS) is used increasingly for characterizing low-energy collective excitations inmaterials. RIXS is a powerful probe, which often requiressophisticated theoretical descriptions to interpret the data. Inparticular, the need for accurate theories describing the influence of electron-phonon (e-p) coupling on RIXS spectra is becoming timely, as instrument resolution improves and this energy regime is rapidly becoming accessible. To date, only rather exploratory theoretical work has beencarried out for such problems. We begin to bridge this gap byproposing a versatile variational approximation for calculating RIXS spectra in weakly doped materials, for a variety of models with diverse e-p couplings. Here, we illustrate some of its potential by studying the role of electron mobility, which is completely neglected in the widely used local approximation based on Lang-Firsov theory. Assuming that the e-p coupling is of the simplest, Holstein type, we discuss the regimes where the local approximation fails, and demonstrate that its improper use may grossly underestimate the e-p coupling strength. 
    more » « less